
OXIDATION OF D:B-FRIEDO-OLEAN-5(10)-ENE. A COMMENT ON THE STRUCTURE OF "ALNUS-5(10)-EN-1-ONE" FROM EUPHORBIA NERIFOLIA

Eri AKIYAMA, Keiichiro OGAWA, Yoshihiko MORIYAMA, Takahiko TSUYUKI, and Takeyoshi TAKAHASHI Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113

The Ratcliffe oxidation of D:B-friedo-olean-5(10)-ene (2) gave D:Bfriedo-olean-5(10)-en-1-one (1), D:B-friedo-olean-5(10)-en-6-one (3), and D:B-friedo-olean-5(10)-ene-1,6-dione (4). The spectral data of the enone (1) are not identical with the corresponding values reported for a triterpene ketone "alnus-5(10)-en-1-one" isolated from <u>Euphorbia</u> <u>nerifolia</u>, indicating that the structure of this natural triterpene must be revised.

It has been reported that a triterpene ketone, $C_{30}H_{48}O$, mp 312-314 ^{O}C , $(\alpha)_D$ + 50^O (CHCl₃), isolated from <u>Euphorbia nerifolia</u>, can be formulated as alnus-5(10)-en-1-one¹) (1; D:B-friedo-olean-5(10)-en-1-one), based on the spectral data and chemical evidence including its conversion into known alnus-5(10)-ene (2; D:B-friedo-olean-5(10)-ene).¹) However, the UV absorption (λ_{max} 218 nm, log ε 3.87)¹) described for this triterpene seems to be incompatible with the formula (1) having an α,β -unsaturated ketone moiety. The present paper deals with a preparation of D:B-friedo-olean-5(10)-en-1-one (1).

D:B-Friedo-olean-5(10)-ene $(2)^{2}$ was treated with chromium trioxide in a mixture of pyridine and dichloromethane³) at room temperature for 20 h to give D:B-friedo-olean-5(10)-en-l-one (1; yield 8 %), mp 257.5-259 °C, $(\alpha)_{\rm D}$ - 53° (CHCl₃); IR (Nujol) 1660 cm⁻¹; UV (EtOH) $\lambda_{\rm max}$ 249 nm (ϵ 19100); PMR (CDCl₃) absence of olefinic proton; mass spectrum m/e 424.3756 (M⁺; m/e 424.3703 calcd for C₃₀H₄₈O),⁴) D:B-friedo-olean-5(10)-en-6-one (3; y: 18 %), mp 243-245 °C, $(\alpha)_{\rm D}$ - 11° (CHCl₃); IR (Nujol) 1655 cm⁻¹; UV (EtOH) $\lambda_{\rm max}$ 250 nm (ϵ 10800); PMR (CDCl₃) absence of olefinic

proton; mass spectrum m/e 424.3788 (M⁺; 424.3703 calcd for $C_{30}H_{48}O$),⁴⁾ and D:Bfriedo-olean-5(10)-ene-1,6-dione (4; y: 9%), mp 236-237 °C, (α)_D - 8° (CHCl₃); IR (Nujol) 1680 cm⁻¹; UV (EtOH) λ_{max} 264 nm (ϵ 9800); PMR (CDCl₃) absence of olefinic proton; mass spectrum m/e 438.3626 (M⁺; m/e 438.3496 calcd for $C_{30}H_{46}O_2$).^{4,5})

On oxidation with the Ratcliffe reagent,³⁾ each of the enone (1 and 3) yielded the enedione (4). The Huang-Minlon reduction of both 1 and 3 gave the olefin (2). The presence of a grouping $-CO-CH_AH_B-CH_X-$ ($J_{AB} = 18$, $J_{AX} = 12$, and $J_{BX} = 6$ Hz) in the enone (3) was revealed by the PMR measurement using Eu(fod)₃-d₂₇ as a shift reagent coupled with PMDR experiments.⁶⁾ A 5(10)-en-6-one moiety was thus given for this enone (3); this led to a 5(10)-en-1-one structure for the other enone (1).

The spectral data and physical constants of 1 thus prerared were found to be not identical with those reported¹⁾ for "alnus-5(10)-en-l-one". It is therefore suggested that the structure of this natural triterpene requires revision.⁷⁾

REFERENCES

- 1) A. S. R. Anjeneyulu, L. R. Row, C. Subrahmanyam, and K. S. Murty, Tetrahedron, <u>29</u>, 3909 (1973).
- 2) J. M. Beaton, F. S. Spring, R. Stevenson, and J. L. Stewart, Tetrahedron, <u>2</u>, 246 (1958); S. Chapon, Bull. Soc. Chim. Fr., 1955, 1076 and 1630.
- 3) R. Ratcliffe and R. Rodehorst, J. Org. Chem., 35, 4000 (1970).
- 4) A satisfactory result was obtained for this formula by elemental analysis.
- 5) The starting material (y: 6 %) was recovered.
- 6) When $\operatorname{Eu}(\operatorname{fod})_3$ -d₂₇ was added to a 7 % (w/v) solution of 3 in CDCl₃ in a molar ratio of 3 and the shift reagent (1:1), the signals due to H_A, H_B, and H_X were observed at δ 12.40, δ 11.92, and δ 6.42, respectively.
- 7) As we have in hand neither the natural triterpene "alnus-5(10)-en-1-one" nor the plant, no further information on the structure of this ketone was obtained. However, the reported IR absorption at 880 cm⁻¹ might suggest the presence of $C=CH_2$ in this natural product.

(Received July 7, 1977)